Statistics in Clinical Research

CH Yeh, Ph.D. Cook Research Incorporated Lafayette, IN

February 5, 2018

Roles that Statistics Plays in Clinical Research

- Study design;
- Conduct of Study;
- Data analyses;

Research Question → Form Hypothesis → Design Study → Data Analyses

Part I

- Overview of Clinical Research
- Statistical-Related Elements in Clinical Research
 - Study Design
 - Study Objectives
 - Statistical Hypothesis
 - Study Population
 - Selections of Study Groups
 - Efficacy and Safety Endpoints
 - Study Procedures and Schedules
 - Sample Size Determination
 - Applications of Meta Analyses in Clinical Studies
 - Conduct of Clinical Research
 - Randomization and Blinding
 - Interim Analyses and Unblinding
 - Confounding Effects on Study Outcome

Part II

- Data Analyses
 - Subject Disposition
 - Analysis Datasets
 - Efficacy Endpoint(s)
 - Safety Endpoints
 - Subgroup Analyses
 - Missing Data and Outliers
 - Sensitivity Analyses
- Additional Topics on Data Analyses
 - Adaptive Study Designs
 - Interim Analyses
 - Exploratory Analyses

From Seed to Plant

- Concept
- Plan
- Implement
- Conclude

From Planning to Writing: Clinical Research Protocol

- Protocol provides the details of a proposed clinical study;
- NIH and FDA developed a clinical trial protocol template for NIHfunded studies or phase 2 and 3 clinical trials that require Investigational New Drug application (IND) or Investigational Device Exemption (IDE) applications:
 - <u>https://osp.od.nih.gov/clinical-research/clinical-trials/</u>
- Instructional and Examples texts are provided.
- Use it as a guideline/reference to cover all elements of Clinical Research are considered.

Statistical-Related Elements in Clinical Research Study Design

- A newly proposed clinical research has a lot of unknowns → use information from published literature;
- Utilize relevant information to form close-to-correct assumptions and design a "best-available-plan" clinical research.

Study Objectives

- Why and What is the purpose of this research?
 - "Does the new device have the same precision as the current one?" → Test for difference;
 - "Is TID more efficacious than BID?" → Test for superiority;
 - "Will the new treatment render less side effects?" \rightarrow Test for inferiority;
- Types of Study Designs
 - Parallel
 - Cross-Over
 - Single Arm

Statistical Hypothesis

- Null hypothesis: the one that the research attempts to dis-prove;
 - Ho= Control group has lower BP than the new treatment
 - \rightarrow Ho: BPcontrol \leq BPnew treatment
- Alternative hypothesis: the one that the research attempts to prove;
 - Ha= Control group has higher BP than the new treatment
 - \rightarrow Ha: BP control > BP new treatment
- Needs to set up correctly because it is related to type I and type II errors;
- Depending on the study objective(s), it can be ≠ (difference), ≥ or ≤ (inferior or superior), ≤ and ≥ (equivalence), ≤ C or ≥ C (non-inferior);
- Specify type I error, # of sided test;
- Lists all key hypotheses will be tested in the study \rightarrow penalty for multiple hypotheses;

Study Population

- Describe study participants : the population's characteristics under study should be clinically relevant to the research objectives ;
- Clearly define inclusion and exclusion criteria;
- Enrolling correct and willing population is essential to the outcome of the study;
- Stratification should be considered if the baseline characteristics of patients might have impact on outcome;
 - Severity of headache;
 - Male vs. female;
 - Elderly vs. young adults

- Example, medication used to improve chronic limb ischemia(for lower extremity);
 - Use Rutherford score to define patient population

Category	Clinical Description
0	Asymptomatic—no hemodynamically significant occlusive disease
1	Mild claudication
2	Moderate claudication
3	Severe claudication
4	Ischemic rest pain
5	Minor tissue loss—nonhealing ulcer, focal gangrene with diffuse pedal ischemia
6	Major tissue loss—extending above TM level, functional foot no longer salvageable

Selection of Study Groups

	Pros	Cons
Placebo Concurrent Control	minimizes subject and investigator bias; Establish placebo effect ; Assess safety profiles;	Ethical concerns; artificial environment from <i>real world;</i>
Active (Positive) Concurrent Control	Compares with current/standard treatment to assess additional clinical benefits; Less ethical concerns;	Need to establish NI margins
External Control (historical data)	Common in medical device where no other device available; Compare to a historical data;	study cannot be blinded;

- Placebo modification
 - Add on Study, Placebo-Controlled; Replacement Study:
 - Standard trt (not fully efficacious) + (placebo, test) =improve clinical outcome = anticancer, antiepileptic, and heart failure drugs
 - Early *Escape*; Rescue
 - Treatment :prompt removal of subjects whose clinical status worsens or fails to improve;
 - Randomized Withdrawal
 - When long term placebo study is not feasible;
 - Wash out xx time period : placebo →tested

Study Endpoints

- A specific measurement or observation to address and correspond to the study's primary objective(s);
 - Treatment A works better than treatment B → define "works better" → patients will recover faster →
 "time (in days) to recover from surgery to able to walk on his/her own for 3 minutes";
- A study can have multiple endpoints, but should be prioritized and adjusted for multiplicity;
 - Effectiveness: reduce pain on knees, QOL,
 - Safety: headache, GI discomfort,
- Clearly specify the definitions of each endpoints (what measurement at what time and how to calculate, criteria qualify the endpoints)
- Types of Endpoints
 - Primary, secondary, tertiary, surrogate (tumor size for cancer progression)
 - Single measurement, composite variables (Death + MI + stroke)

Treatment for Deep Vein Thrombosis (DVT)

Endpoints

- A significant reduction of *swelling* (tension-controlled tape) of the affected DVT leg at 1MO;
- A significant reduction of *Pain at 1MO:* visual analogue scale;
- Functional status improvement as assessed by the walking impairment questionnaire at 1MO, 6MO;
- Improved signs and symptoms 12MO at : Villalta scale

Study Procedures and Schedules

- Describe study intervention:
 - What product (medication, device) or procedure will be given by whom;
 - when/how/what data are collected;
 - Study schedules should be laid out clearly as they are relevant to study endpoints;
 - Data collected at fixed schedules: Blood pressure at 1 month after start of study; medical device migrates 2 years after implanted;
 - Time to event (survival study): time death after the CABG, time to open surgery → requires real-time follow-up

Sample Size Determination

$$N = \frac{\sigma^2 \left(Z_{\alpha \text{ or } \frac{\alpha}{2}} + Z_{\beta} \right)^2}{\Delta^2}$$

- Given α level (ex, 0.05 for 2-sided, $\frac{\alpha}{2}$ or α) and power of study (80%, 90% 1β);
- # of study participants is calculated base on the "primary hypothesis":
 - Per "primary endpoint": the rate/mean/time of control/test groups, variance for continuous endpoints;
 - The expected treatment benefits (Δ):
 - minimal effect which has clinical relevance in the management of patients
 - a judgement concerning the anticipated effect of the new treatment
 - For NI or EQ studies, sample size will be larger;

- More often than not, this information is unknown;
- But most of time, similar info can be found in published literature or historical studies (relevant to the test group);
- Use Meta-analyses to provide estimates (assumptions) for sample size calculation;
 - investigate the sensitivity of the sample size estimate to a variety of deviation form the assumptions;

Meta-Analyses

- A statistical method that *systematically* combines *pertinent* qualitative and quantitative study data from several *selected* studies to assess and develop a *single conclusion* that has greater statistical power.
- This conclusion is statistically stronger than the analysis of a single study, due to increased numbers of subjects, greater diversity among subjects, or accumulated effects and results.

Meta-Analyses can be used

- To establish statistical significance with studies that have conflicting results
- To develop a more correct estimate of effect magnitude
- To provide a more complex analysis of harms, safety data, and benefits
- To examine subgroups with individual numbers that are not statistically significant

Pitfalls of Meta-Analyses

- Difficult and time consuming to identify appropriate studies;
- Not all studies provide adequate data for inclusion and analysis;
- Requires advanced statistical techniques;
- Heterogeneity of study populations/designs/conducts;
 - Examination of heterogeneity is perhaps the most important task in metaanalysis.

Systematic review for Meta Analyses

- Collect empirical evidence that fits prespecified eligibility criteria to answer a specific research question;
 - prespecify selection criteria will minimize selecting bias;
- Characteristics of a systematic review:
 - Define objectives of the review;
 - What is the benefit of aspirin in stroke/Afib? What is magnitude of the benefit? Better than new blood thinner (Eliquis, warfarin);
 - Eligibility criteria for studies;
 - Randomized active-controlled/placebo-control trails, double-blind, published (what journals, conferences);
 - an assessment of the validity of the findings of the included studies;
 - Is it peer-reviewed? Is the study well conducted? Sponsors of the study?

Meta analyses and Sample Size Estimates

 If use meta-analyses to obtain the estimates for sample size calculation, be very cautious in selecting studies that are *relevant* to your study;

Relevant means:

- Study design:
 - parallel/cross-over, active/placebo control,
 - length of study period,
 - treatment groups: similar procedure/medication/doses/regimens,
 - efficacy endpoints: definition, calculation, timing, collecting tools,
 - safety endpoints: definition, timing,
 - study population: disease severity, baseline characteristics, subsets,
 - Conduct of study: study procedure, where the study was conducted, medical practice,

Be mindful of "Dis-similarities"

- If include "not so similar" studies, assess how that dis-similarity will impact the estimate;
 - Literature enrolled NYHA class II, your study enroll NYHA class III;
 - Drug XX at dose YY had treatment of 20%, your dose is twice higher;
 - Efficacy endpoint based on historical data at 18MO was 30%, your study will only go to 12MO;
 - Endpoint used in treatment peripheral vessel included major amputation and death, your endpoint include major amputation and death and wound healing;
 - Historical studies included patients did not respond to standard treatment (but did not know how long after treatment), your study include patients that are not responsive after 6MO;

Meta-Analyses for sample size estimates

- 1. Clinical scientists review and provide the list of literature that are relevant to the planned clinical research;
- 2. Statisticians review the data/literature and perform statistical analyses for estimates (mean, variance, treatment effect);
- 3. Various statistical methods (for categorical, continuous, time to events endpoints) will be utilized to assess the estimates;
- 4. Based on the dis/similarities of the historical data and current study, clinical scientists and statisticians should assess how to adjust the estimates;
- 5. Assess the sensitivity/robustness of the estimates and sample sizes;

Example

- Phase III new drug for peripheral artery disease/critical limb ischemia;
- Aim to widen blood vessels (vasodilator);
- Clinical benefits: reduce major amputation and death;
- Literature review;
- Estimate AFS+death rate;
- Assess sensitivity of the estimates: study length/Follow-up, population, procedure/SOC, treatment groups (dose, regimen, control group), endpoints;

	6MO (95%CI)	12MO	Overall
Test(%)	69(<mark>45.53</mark> , 85)	66.74 (<mark>56.94</mark> , 75.27)	68(<mark>55.79</mark> , 78.16)
Control(%)	49.54 (<mark>28.36</mark> , 70.89)	31.37 (<mark>7</mark> , 73.77)	42.73 (<mark>24.39</mark> , 63.3)
N (Δ) /group	78 (20%)	25 (35%)	43 (26%)
	99(17%)	10(50%)	28(31%)

Statistical-Related Elements in Clinical Research Conduct of Clinical Research

- Blinding : to reduce the occurrence of conscious and unconscious bias;
 - Interim Analyses and unblinding: remaining unblinded after interim is critical to the integrity of the study;
- Randomization : provides a sound statistical basis for the quantitative evaluation;
 - Confounding Effects on Study Outcome : managed by randomization;

Blinding

- Limit bias in *conduct* and *interpretation* of study;
- Double-blind is optimal;
 - but sometimes it is not possible to blind patients or investigators
 - stents from 2 device manufactures;
 - Treatment induced-effect is different (drug-induced rash);
- Single-blind or open-label study: effort should be made to limit/restrict investigators/staff/sponsors knowledge of treatment;
- Breaking the blind (for a single subject) should be considered only for the subject's care; any intentional or unintentional breaking of the blind should be reported;

Interim Analyses and Unblinding (conduct of study)

- Unplanned or impulsive analyses are not interim analyses;
- Should be pre-planned and described in protocol;
 - Types of interim; stop for futility/efficacy; sample size re-adjustment
 - Statistical algorithm/method; blinding issues; criteria for continuing/halting study; type I error adjustment; final p-value;
 - When to perform; frequency of analyses;
 - Who to perform; distributions of the interim results;
- Unblinding for interim analyses
 - *it's workable, as long as it's documented;*
 - Should minimize the number of people unblinded;
 - Reviewers/analysts who are unblinded should not be involved in study decision;

Randomization

 Tends to balance the baseline characteristics, medical history, disease severity of patient population between treatment groups → isolate treatment effect;

• Randomization schemes:

- Fixed-randomization schemes = *Ratio* (control : test) remains constant during study
 - Blocked (by center, region, hospital) : block sizes
 - Stratified: variables that might potentially correlate with treatment effect
- Dynamic randomization = Ratio (control : test) modified during study
 - For example, "Play the Winner" scheme;
 - Use in rare/critical illness or endpoint can be observed soon after treatment was given;
 - Logistics is complicated (blinding will be difficult);
 - But will give therapeutic superior test group a better chance to demonstrate efficacy;

Confounding Effects on Study Outcome

- Mixing with test effect, causes "bias" that might preclude finding a true effect;
- Difficult to establish cause/effect link: may discredit the study outcome;
 - Treatment to avoid lower-limb amputation:

Amputation at 1 year		Control	Test
Yes		40/200 (20%)	20/200 (10%)
Smoking	Yes	35/150 (23%)	6/30 (20%)
	No	5/50 (10%)	14/170 (8.2%)
No		160/200	180/200

- Important to identify and manage confounding factors when design the study;
 - Clinical: identify
 - Statistics: manage via design and analyses